## Chapter 2 – Excerpt 6

Last Friday was the first one on which I didn’t post an excerpt since this project began, 14 weeks ago. The reason why is that I was unusually busy, because a major project (an opportunity to sell my math clocks at a festival) was suddenly superimposed on an already very full weekend. However, no matter how busy I am, I am sufficiently obsessive-compulsive that I would have squeezed it in, except that I completely forgot about it. Ironically, this lapse of memory was probably due to lack of sleep, which in turn was due to my staying up late to watch a movie (because it had to be returned that morning) that – here’s where the irony comes in – was about a literately successful blogger, namely *Julie and Julia*. Perhaps hearing about her attentions from vast quantities of blog readers caused me to repress thinking about the contrast with my small set of readers and even smaller set of commenters. And even when I did belatedly remember this project, I was not inspired to get back on track.

So I really want to encourage comments on the blog. For those of you who know me, who keep giving me comments in person or by email, please put them on the blog instead. And for those felines among you, I realize it’s hard to type when your paws are wider than the keys, but know that I really appreciate your efforts.

Meanwhile, I am making up for this lapse it by including a double excerpt today, with lots of pictures, including a couple of cartoons. Although today is National Hairball Awareness Day, I cannot think of any way to relate that to the topics in today’s excerpt. Maybe that’s a good thing – there are no gross hairballs forthcoming. Rather, you will see graceful ice skaters and ballet dancers, both human and feline, and learn some of the secrets behind their motions. Also revealed are the related but more complex directions for the even more graceful maneuvering required for you to always land on your feet.

Moments of Inertia of Extended Irregular Objects Your body has three principal axes of rotation. They are the three most symmetric mutually perpendicular axes through your center of mass (see Figure 2-18(a)). Human bodies also have three such axes (see Figure 2-18(b)). In both cases, it is easiest to rotate about the longitudinal axis, because the mass is concentrated closer to it. Human acrobats do spins, flips, and cartwheels around their longitudinal, transverse and median axes respectively, in order of increasing difficulty due to increasing moments of inertia. The longer your legs, the greater your rotational inertia, the harder it is to run quickly. This you find it easier to run fast than a horse or giraffe does but more difficult than a dachshund or a mouse. Regardless of their leg length, anyone can always reduce their rotational inertia by bending their legs. Thus, as we run, we naturally tend to bend our legs, since we can tell that it’s a lot harder to swing them when they’re straight. Sometimes you actually Consider a spinning ice skater or ballerina. (See Figure 2-21.) By extending her arms, she can triple her rotational inertia, and by extending one of her legs as well as both arms, she can increase it six-fold. Angular Momentum
Thus the angular momentum of an object depends on how the mass of the object is distributed around the axis of rotation, as well as the rate at which the object is rotating. Recall the principle of the Conservation of [Linear] Momentum: if there is no net external force on a system, then its total amount of momentum is a constant. Analogously, there is an equally momentous principle of the Mathematical Digression Mathematically, this principle is just a reformulation of the rotational analog of Newton’s Second Law. Note that just as force is the time derivative of linear momentum, torque is the time derivative of angular momentum. And, to be ultra-precise, angular momentum is actually the People often take advantage of the principle of Conservation of Angular Momentum for recreational purposes, such as ball games. See Figure 2-22. It explains why spinning footballs are more stable than non-spinning ones. Above we mentioned that a dancer could increase her moment of inertia six-fold by extending three of her limbs. Alternatively, if she starts a spin with the three limbs extended, and then pulls them all in, this move decreases her moment of inertia six-fold. By the Conservation of Angular Momentum principle, her rotational speed, or spin rate, must simultaneously increase by the same factor of six, which looks very impressive (see the schematic figures in Figure 2-23(a) and the authentic one in Figure 2-23(b)). Although cats engage in similar recreational activities (see Figure 2-21(c)), the primary feline application of the principle of Conservation of Angular Momentum is far more serious, sometimes even life-saving.
While you presumably find these instructions to be quite clear, non-feline animals are not as adept at following them. See Figure 2-25.
Humans also don’t have this skill, but in their case it’s more understandable. Being normally upright creatures, their principal axis of rotation about which it is easiest to twist is one that has no effect on changing their orientation with respect to the ground. And they are significantly less agile, partly because they have only twenty-five vertebrae, five fewer than felines. Furthermore, they don’t have the advantage of tails. Thus, although humans can perform similar maneuvers, they cannot do so fast enough to avoid landing head-first if they are dropped head-first. However, professional astronauts, after much practice, have managed to attain the skill of zero-angular-momentum twists about each of their principal axes in zero-gravity environments. On the other hand, some inanimate objects manage to achieve what canines, rhinos and humans cannot. For example, according to Murphy’s Law, buttered toast always lands buttered side down. This lead us to suggest, but not recommend, the following experiment.
Lab Exercise – Testing Murphy’s Conjecture To test whether your survival instinct is powerful enough to supersede Murphy’s Law, strap a piece of buttered toast to your back, then try falling from various heights. Note that it should be buttered side up, so that you and it have the same preferred orientation. Hence, you won’t get your fur oily from doing this laboratory work. While many people know Newton discovered gravity from watching an apple fall, far fewer realize that he discovered the conservation of angular momentum by watching his cat fall. He noticed that Spitface always landed on her feet and by repeated observation he deduced how she conserved angular momentum while doing so. As recent studies have shown, survival from a fall depends on height in a surprising way. Cats falling from the seventh floor have a survival rate approximately 30% lower than that of cats falling from the 20th floor. Apparently this is because it “takes about eight floors for the cat to realize what is occurring, relax and correct itself.” 5 – Zoologist Desmond Morris calls these maneuvers a “righting reflex” in 6 -Source: TBD<return-to-text> © All Contents Copyright 2008-2010, Skona Brittain |

leave a comment